
,REPORT DOCUMENTATION PAGE I oMSppNo. 70e08

Public reporting burden for this collection of information is estimated to average I hour per response, including the time for rtnevein strucions,. sarching existing data sources.
gathering and maintaiing the data needed, and completing and reviewing the collection of information. Send comments regarding this burden fftimate or any other aspect of this
coletion of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204. Arlington, VA 22202 4302. and to the Office of Management and Budget, Paperwork Reduction Project (0704.0188). Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) j2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
I February 28, 1991 Final _ 1/85 to 1/90

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Analytic Methods of Image Registration: Displacement Estimation and Resampling

PE - 0602111
6. AUTHOR(S) PR - RA1lW53

A. Schaum and M. McHugh

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Naval Research Laboratory
Washington, DC 20375-5000 NRL Report 9298

9. SPONSORING/MONITORING AGENCY NAME( AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

Office of Naval Technology
Arlington, VA 22217-5000

II. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. AKICIRRL (IVvaXimmUteJWOroS)

Registration algorithms are developed and evaluated by using oversampled scanning imagery directly and star-
ing imagery with a subpixel autocorrelation model. A Fourier transform-based method, Phase Correlation, is
enhanced to remove edge effects, to accommodate nonintegral shifts, and to resolve ambiguity in the interpretation
of its output. The result is shown to be accurate over a wide range of misregistration and to be capable of detecting
cloud parallax and other relative-motion effects. A family of gradient-based methods is also derived and is shown to
include older methods: the Image Displacement Estimation Algorithm (IDEA) and the Gradient Estimation Method
(GEMS). One member of the family, the Canonical Gradient Estimate (CAGRE), proves to be generally superior,
as long as the noise-to-clutter ratio is not unusually large compared to typical values for Earth backgrounds. Resam-
pling methods are also tested: linear, spline, phase-shifting, and cubic convolution; cubic convolution performs
marginally better for all values of shift. The net result here is a substantial improvement in the state of the art of
analytic image registration, which may permit the use of frame differencing as a moving-target indicator in the most
cluttered natural backgrounds.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Image registration Phase correlation Resampling 37
IR target detection Frame differencing Velocity estimation 16. PRICE CODE
Displacement estimation

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIED UNCLASSIFIED UNCLASSIFIED UL

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
2980102i

I:MN /7540-U1-2U0-55UU





CONTENTS

1. BACKGROUND .......................................................................... 1

2. REPORT OUTLINE .......................................................................... 1

3. THE PHASE CORRELATION METHOD . ............................................................... 2

Properties of the Phase-Correlation Function ................... .................................... 4
Enhancements and Technical Modifications of PC .............. .................................. 9

4. GRADIENT-BASED DISPLACEMENT ESTIMATION ............. ................................. 11

Model Autocorrelation Function ....................................................................... 16
Reducing Bias in s .................................. ........................................ 16
Section Summary ............................ .............................................. 20

5. METHODS OF PERFORMANCE ASSESSMENT ................. .................................... 22

6. RESAMPLING METHODS ........................................................................... 25

Interpolators .......................................................................... 26
Evaluation and Results ........................................................................... 27

7. SUMMARY AND CONCLUSIONS ....................................................................... 28

REFERENCES .......................................................................... 29

APPENDIX A - Explanation of Prior Work . ............................................................... 31

APPENDIX B - Two-Dimensional Shift Estimates .................... .................................... 33

iii





ANALYTIC METHODS OF IMAGE REGISTRATION:
DISPLACEMENT ESTIMATION AND RESAMPLING

1. BACKGROUND

The problem motivating this study is the autonomous detection and tracking of unresolved tar-
gets in images collected by an IR sensor. With a low error rate, a target must be detected and
tracked within a few frame times of its appearance in the sensor's field of view.

Historically, the limiting factor in the performance of IR detection systems has been the high
rate of false alarms induced by background clutter. A natural approach to reducing these detection
errors is to exploit the temporal redundancy of natural imagery, which is large if interframe times are
short. In practice, often these times can be made short enough, while still allowing targets of interest
to traverse at least one sample. This permits the use of frame differencing as a target detection algo-
rithm.

After frame differencing, the signature of a moving target is a dipole, and the residual signal
from a pair of well-registered backgrounds is sensor/photon noise. However, if drift or jitter is
present, background clutter leaks through a differencer and degrades performance. This report
discusses methods for removing the residual misregistration that persists after hardware-based methods
have been exhausted, or are not used.

2. REPORT OUTLINE

We first consider two methods of estimating the amount of misregistration: Phase Correlation
(PC) and the Image Displacement Estimation Algorithm (IDEA) [1]. These appear to be the leading
software-based candidates meeting the constraints imposed by the mission described above. The con-
cern here is not with registration algorithms that require a large number of images - frame differenc-
ing requires only two. Therefore, the previously reported Pseudoregistration [2], which is a polyno-
mial interpolation method with IDEA as a component, is not considered; nor is the Subspace Projec-
tion Algorithm [3] which is a geometric construction that maps all the measurements into a lower
dimensional subspace [4]. PC and IDEA require only a pair of images for estimating the displace-
ment, and they are appropriate for a wide variety of applications where the number of available
images is small. Phase Correlation is discussed in detail in Section 3.

Section 4 is devoted to gradient-based methods, including IDEA. We derived the general
analytical form of all such estimates and, in the process, we explain the past deficiencies apparent in
some experimental applications of IDEA. This leads naturally to the defining and analysis of an
expanded family of gradient-based estimates. The performance of all these algorithms is predicted as
a function of the image autocorrelation function, with image-independent additive white noise
allowed. As a corollary application of the analytical approach, we consider previously reported
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efforts to register data from the Air Force's High-Resolution Calibrated Airborne Measurements Pro-
gram (HiCAMP) by using a method called GEMS. This earlier work had met with only partial suc-
cess, but no explanation was ever offered for its imperfect performance. Appendix A interprets its
results in terms of the Section 4 model.

Section 5 introduces a method that eliminates the need to interpolate digital imagery in order to
test displacement estimates, such as PC and IDEA, for subpixel shifts. It is based on the use of over-
sampled scanner data.

Finally, Section 6 examines the second half of the registration problem, resampling, which is
interpolation between integral samples after estimation of a (perhaps) nonintegral displacement.
Several schemes are compared and the leading overall candidate is found to be a method called Cubic
Convolution (CC). However, the margin of its superiority is not great, and the best resampler choice
depends importantly on other factors, such as ease of integration with the estimation stage of registra-
tion.

3. THE PHASE CORRELATION METHOD

The Phase Correlation method (PC) appeared in the open literature as early as 1975 [5], where
its superiority to conventional correlation was noted. It has been referenced occasionally in the litera-
ture and recently was used by the authors, working for the Navy's Infrared Analysis Modeling and
Measurements Program (IRAMMP) as a sensor diagnostic and in target tracking work [6]. However,
its full potential apparently has never been realized. In particular, its capability for recognizing paral-
lax effects is demonstrated here. Cloud parallax as seen from a satellite platform has been shown
through simulation at the Naval Research Laboratory (NRL) to be capable of significantly degrading
the performance of a frame-differencing signal processor. It is also the principal temporal processing
problem faced by airborne infrared search and track systems.

Phase Correlation is based on the principle that a translation of the coordinate frame used to
define a mathematical function is reflected in the Fourier domain purely as a linear shift in the phase.
That is, if xn describes the intensity at the nth sample in the first image, and

Ynr = Xns (1)

represents the same sample from the next image frame, which is shifted by s samples,* then

Yk = Xk e i2 sk /N (2)

where Xk (Yk) is the discrete Fourier transform (DFT) of Xn (Yn). For example

N-1
Xk = 5 xn e-i2 rnk/N (3)

n =O

with N the number of samples in the image.

*The simpler one-dimensional notation is used, but the results generalize naturally to two image dimensions.
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Equation (2) holds generally as N - xo (with s IN, the absolute shift, held constant) because the
DFT becomes the continuous Fourier transform. For finite N, Eqs. (1) and (2) hold only if s is an
integer and x, is periodic:

Xn+N = Xn. (4)

This condition means that Eqs. (1) and (2) are strictly true only if the images have been derived from
a scene that is periodic. Although real imagery seldom has this property, PC, which was inspired by
Eq. (2), is still a surprisingly accurate method, even when I s I is a large fraction of N.

Guided by Eq. (2), the Fourier phase difference Ok could, in principle, be found by computing
the complex logarithm of the ratio:

Xk e k (5)
Yk

In the ideal case, ok = 27rskIN. Therefore, the shift s could be estimated from the slope of a
straight-line fit of Ok vs k. However, Eq. (5) admits 27r ambiguities in the value of ok, so s can be
determined at any frequency k only up to an additive multiple of N/k. Methods to "unwrap" the
phase difference have been developed [7], but they are generally computationally intensive procedures
that, furthermore, have not been extended to two dimensions.

An elegant way to remove the ambiguity in phase is to exponentiate it, i.e., maintain the phase
information in a form like the right-hand side of Eq. (5). More precisely, one forms the "phase-
correlation function" p defined as

= I N-1, (6)nkI
Pn -N Xk Yk ei26nk/N)

where * means complex conjugation and ^ means "normalized," e.g.,

Xk
Xk = * (7)

lXk I

The phase-correlation function in Eq. (6) is the cross-correlation function of the "whitened" scenes x
and j that result from normalizing their Fourier transforms X and Y to unit magnitude. The standard
cross-correlation function en, which equals the right-hand side of Eq. (6) if the As are removed, has
long been used to estimate the relative image shift s because the peak value of cn occurs theoretically
at n = s. However, the peak in c has an intrinsic, scene-dependent breadth that usually extends for
many samples. The width of the peak is related to some typical "correlation length" in the image.

Just as for the function c, the maximum of p also occurs at position s, but its peak-width is
small (approximately one pixel*) and is independent of scene statistics. Furthermore, if s is an

*The width can be greater if the data are undersampled.
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integer, then p, = bn-s (Kronecker delta function). These idealized properties of both c and p are
degraded for real imagery because of edge effects, noise, temporal background evolution, distortions,
etc., but p proves to degrade much more gracefully.

In Fig. l(a), c, is plotted for a pair of subimages with relative displacement s = 35 columns
(1/3 of the subimage size), extracted from a single infrared image collected by a high-flying aircraft.
Several local maxima correspond to accidental alignment of similar features from different parts of the
terrain images. These peaks are sometimes larger than the peak at the true shift.

Figure 1(b) shows p, for the same images. Because the energy in natural background imagery
typically is concentrated in the lower spatial frequencies, whitening (Eq. (7)) produces a relative
increase in the high-frequency content of the images. This explains the noisiness of p compared to c.
However, the prominence of the peak in p persists, and this is the hallmark of the PC method:
surplus signal-to-noise is available for coping both with imagery that is far from the theoretical ideal
and with shifts so large that only small portions of the two images are common.

As an example of the robustness of PC, Fig. 2 shows the result of applying it to a pair of
images collected with an airborne sensor (HiCAMP) aimed at terrain through a hole in a cloud deck.
The ground, represented by the smaller peak, appears to move because of motion of the sensor plat-
form. High clouds have a different relative motion that is reflected by the appearance of another dis-
tinct peak. For such imagery, cross-correlation always broadens and merges the two peaks, hiding
parallax effects.

The double-peak effects can also be seen when the two coherently moving parts of an image are
the background and a target. Figures 3(a) and 3(b) show reproductions of imagery from a ground-
based Background Measurements and Analysis Program (BMAP)* experiment [8] conducted at the
Naval Research Laboratory in which a commercial aircraft appears along with a few background
clouds. Figures 3(c) and (d) depict the resulting c and p. The central peak of p informs us that a
large fraction of the scene energy is stationary (the background), while the displaced peak indicates
the presence of a moving object (the aircraft) and simultaneously permits an estimate of its velocity.

Properties of the Phase-Correlation Function

Note that in Eq. (6) Xk Yk is computed, rather than Xk/Yk, as suggested by Eq. (5). In the ideal
case (noiseless periodic scene and s = integer) the two expressions are equivalent, but for real data,
the former has the advantage in that it remains normalized to a constant (unit) magnitude, i.e., whi-
tened. The whitening process gives the phase-correlation function p several advantages over the
cross-correlation function c.

The most striking property of p is the sharp, scene-independent peak discussed earlier. How-
ever, p is also invariant with respect to DC shift in image intensity, as well as any intensity scaling
that depends only on spatial frequency. This implies, for example, that for imagery produced by dif-
ferent detectors, PC is insensitive to offset and (fixed) gain errors in calibration. Also, PC is unaf-
fected by differences in the illumination of a pair of images that are seen only in reflected light.
Registration in different spectral bands is also feasible because of the scaling invariance.

*The Navy's Background Measurements and Analysis Program was sponsored by the Office of Naval Technology.
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Fig. I -Comparison of (a) the cross-correlation function with (b) the phase correlation function for a pair of HiCAMP images shifted by 35
pixels. The phase correlation function has a sharp peak at the correct location (35,0), but the cross-correlation function has several broad peaks
and a maximum at (34,0), which is one full pixel removed from the correct shift.
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Fig. 2 - "Superresolution" of image motions with PC. The Phase Correlation function is shown for a pair of HiCAMP
images in which cloud parallax is present. Because the clouds are closer to the sensor, their displacement (after I second)

differs slightly from that of the ground and a second peak appears. Cross-correlation always merges such peaks into a
broad blur.
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(a)

(b)

(c)

(d)

Fig. 3 - Two BMAP images (a) and (b) of an aircraft moving across a thin cloud bank.
(c) The cross-correlation function gives only a single broad peak at the origin, indicating a
stationary background. (d) the Phase Correlation function distinguishes between the
background (peak and the origin) and the target (peak displaced by amount of aircraft
motion).

Furthermore, two useful conserved quantities can be derived: the total signal and the total sig-
nal energy. Equation (6) and the fact that x, yn are real imply that

N-I N-I
EP = 1. (8)
n=O n=O

It follows that the mean and variance, lap and ar, are independent of the image content:

1 2 N 1 I
AP N= - N2 (9)

Equations (8) and (9) hold also in two dimensions, with N the total number of samples.

When the maximum value of p is near unity, Eq. (8) constrains the rest of the function to small
values. The height of the peak thus serves as an indicator of the reliability of PC. (This is not true
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of the cross-correlation function.) If ps, the value at the true shift, is considered to be the "signal,"
and the rest of the function is modeled as random noise, then a signal-to-noise ratio (SNR),

SNR = LNP 1/2 (10)

can be calculated, valid for large N. It measures the likelihood of locating the correct peak in p,,
i.e., the reliability of the method for estimating displacement. Figure 4 shows a typical distribution
of pn, with N = 5760 and P max = Ps = 0.18. Although the peak is far from its theoretical max-
imum value of one, even with such a modest frame size the SNR is 13.6.

Notice that in Fig. 4 the amplitudes of the residual samples are approximately Gaussian-
distributed. If they were also independent, then we could associate with a given value of Pmax the
probability that it represented the true displacement. This probability depends on the marginal distri-
bution of the Gaussian. However, in practice this method usually fails.

V

ci

Q 0s
o

0T

0
C'J
-0 

2

0

N

-0.06 -0.04 -0.02

P nx

00I I I I I

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0 14 0.16 0 18

Fig. 4 - Histogram of the Phase Correlation function p, from a pair of BMAP images. Ideally the peak
value Pmax is 1, and the remainder of the function is zero. But sensor noise, nonperiodicity, subpixel
shifts, distortions, etc., all broaden the histogram and decrease P max, subject to the constraints of Eq. (8).
In this example, Pmax, is only 0.18, but the signal-to-noise ratio is still greater than 13.
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Nevertheless, for any pair of natural background images, there is a threshold for Pmax, above
which value PC is reliable. This performance metric, the magnitude of pmax, also lets one quantify
the degradation of PC as a result of noise, image distortions, nonoverlap of images, etc. Figure 5
describes an example, showing the effects of pure rotation on PC's accuracy. The value of pmax is
plotted for a given image size. For small rotations, this maximum value occurs at (0,0), indicating
the correct translation of 0 pixels (for HiCAMP, a pixel is identical to a sample). At a large enough
rotation, PC fails (shown by the dots on the curves), because Pmax merges with the "noise." The
maximum of p no longer occurs at the point (0,0). In practice, a threshold can be set at several times
the value of P max at which PC fails.

Image Size

-'-a ~ ~ ~ ~ Anl ofRtto(dges

0

00

1 2 3 4 5 6 7 8 9 10

Angle of Rotation (degrees)

Fig. 5 - The value of the peak of the Phase Correlation function Pmax as a function of
rotation angle for several image sizes. Rotations of HiCAMP imagery were
approximated by using Cubic Convolution (see Section 6). For pure, small rotations,
the peak occurs at the origin of a correlation plot (not shown), indicating the correct
translation: 0 pixels. As the rotation is increased, Pmax decreases until it merges with
the "noise." The dots on the curves indicate those angles where noise overcomes the
desired peak at the origin.

Enhancements and Technical Modifications of PC

For ideal pairs of images (periodic scenes and integral shift) the Phase Correlation function p,
reduces to the Kronecker delta function. But real imagery has noise, nonrigid distortions, noninteger
sample displacements, and finite extent. Our modifications to the basic PC method enhance its per-
formance in the presence of these degrading factors.

The first modification reduces edge effects. The representation of a finite image by the discrete
Fourier transform implicitly imparts to it a periodicity equal to the image size, which often creates a
strong virtual discontinuity across the edges. When the high frequencies associated with these discon-
tinuities are combined in pn, they usually wash out and result in noise and a reduced peak value.

9
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However, whenever the discontinuities are coincident, phases in the two images are partially corre-

lated, and the values of pn can rise. Therefore, local peaks can occur at all points corresponding to

even a partial overlapping of the edges of the two shifted images. To suppress these false peaks,
which take the shape of a cross through the origin of a PC plot, we taper the images at the edges to

their means by using, for example, a von Hann window, i.e., multiplication by a sinusoid. (The
results are insensitive to the type of tapering.)

Another problem caused by the implicit imposition of periodicity occurs in the interpretation of a
peak in p. As are images, p is also made periodic by the use of DFTs so that, for example, a peak at

position s is always accompanied by a peak at position s -N. This ambiguity can be eliminated by

the following procedure: Choose one shift hypothesis and apply PC again, but this time to cropped
versions of the two images, corresponding to those subimages that would be in common were that
hypothesis correct. The peak in the new p is sharper than in the old if the hypothesis is correct; oth-

erwise, the peak disappears because the cropped images have no common points. In two dimensions,

the ambiguity allows all combinations of s and N ± s in both directions to be confused, but the same
cropping principle can be used. In practice, the displacements are usually known to an accuracy

better than one-half frame (N /2 samples), so that no iterations are required. Cropping, however, is
still beneficial.

Another modification of PC concerns shifts by a nonintegral number of samples. Because the

finite DFT must be used to produce results in finite time, all transformed signals, including p, are

effectively bandlimited. In the limit for large N, Pn therefore approaches a sinc function:

sin 7r(n - s) (11)

7t (n - s)

i.e., a bandlimited 6-function. Note that when the shift s is an integer, Eq. (11) reduces to the

Kronecker delta function.

Therefore, after locating the peak value p max several points in its neighborhood can be fit to

Eq. (11) to produce a subsample estimate for s. In practice, using only P max and its highest neighbor

gives excellent results. This method is used in the comparisons with IDEA performance in Section 4.

In many imaging systems, distortions such as zoom, rotation, and skew are introduced by sensor
motion. These distortions all degrade the performance of PC. However, their effects can be minim-

ized by partitioning the image into small, overlapping subframes and applying PC to each of these
separately. (Alternatively, one may apply PC to only a select number of subframes-for example the

corners and the center-and deduce all local motions by interpolation.) The advantage of using
smaller subframes is reduced computation; the penalty is the decreased SNR implied by Eq. (10).
The size of the penalty can depend on many other factors besides size of the subframe: pixel

resolution, sampling rate, frame time, platform altitude, and the statistics of the backgrounds of
interest relative to sensor noise.

Finally, we report on an improvement to PC based on the original idea of a linear phase shift

(see Eq. (2)). The location of the maximum of p,, gives an excellent estimate of the displacement.

This estimate can be used as a guideline for phase-unwrapping. The straight line in Fig. 6 has a

slope corresponding to the shift (0.4 samples) predicted by PC for a BMAP image pair. The data
points are the phases of the DFT unwrapped around the straight line. Because the data are highly

10
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Fig. 6 - The Fourier phase differences between two BMAP images. The straight line (k = 27rks IN)
indicates a shift s of 0.4 samples, which is known from the Phase Correlation peak location. Oversampling
(3.5 samples per dwell) causes high-frequency noise that can be removed with low-pass filtering. A
subsequent Ims Phase Fit then can produce a more accurate shift estimate without the need to interpolate
the PC function.

oversampled, in the Nyquist sense, the points at higher frequencies correspond to temporal noise.
They can be discarded, and a linear fit can be made to the low-frequency points only, to yield a more
accurate estimate of the slope and hence of the true image displacement. Without the original line as
a guide, the determination of slope is as ambiguous as the phase, and this Phase Fitting method can-
not be realized. Estimating the slope by this method not only reduces an obvious source of error,
temporal noise - it also obviates the need for interpolation of the PC function. Furthermore, if the
data are undersampled, aliasing causes a negative bias in PC. If the undersampling is not too severe,
all aliasing occurs at high frequencies, so that bandpass filtering is again appropriate.

4. GRADIENT-BASED DISPLACEMENT ESTIMATION

Gradient-based displacement estimation is based on a first-order Taylor Series expansion of
image intensity. This section first describes one such older method, IDEA, and applies it to cali-
brated imagery. For comparison, PC is applied to the same data. The theoretical underpinnings of
IDEA's effectiveness are analyzed, and the insights gained are used to generate a family of gradient-
based estimates. Their experimental performance is then compared to theoretical predictions by use
of a model autocorrelation function.

IDEA [1] was originally developed by the Optical Sciences Company (tOSC) as a heuristic
method. It was improved through a suggestion of E. Rauch of Lockheed Corporation, who recog-
nized the original version as an approximation to a least-mean-squares (lms) solution to the displace-
ment estimation problem. He then extended this concept to a larger class of image distortions, calling

11
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the resulting version the Gradient Estimated Motion Suppression (GEMS) algorithm [9]. The motiva-
tion in these earlier studies, as here, was minimizing residual clutter in differenced frames.

Instead of repeating tOSC's intuitive rationale for the form of IDEA, which is a particular
gradient-based method, we describe the general principles of gradient-based displacement estimation.
(The gradient-based approach was introduced originally by Limb and Murphy [10].) Then IDEA, as
well as a new family of related algorithms, becomes understandable in a larger context. For simpli-

city, the analysis is restricted to one dimension. Appendix B discusses the extension to two dimen-
sions.

As before, xn and yn are defined to be corresponding pixel intensities from an image pair shifted
by s samples. These are taken to be samples of an underlying continuous image intensity, r, which is

the convolution of scene radiance with a sensor point-response. Because the interest here is in
gradient-based estimation, it may be assumed without loss of generality that the sequence Jrj has had
its mean removed.

The position labels are chosen so that

Xn = rn,

and then

n = rn +s- (12)

For small shifts s, the gradient approximation is

Yn = Xn + s g0 , (13)

with g =_ dr /dn. If approximate values of g, are available, an estimate s of the value of s may be
found by minimizing the squared differences,

1 '% [Yn -Xn - gn), (14)

between measured and estimated values of y. The answer to the minimization problem is

E (yxn )g (15)

Unfortunately, this estimate requires the values of the slope gn, information that is not generally
available. Some approximation for g, is necessary, and its form can introduce bias.

The IDEA formulation originated without the benefit of Eq. (15) as a guide, but is related to it.
IDEA is given by:

1 (Y.+I-Xn+l + YnXln)(Yn+l-Yn + Xn+ -Xn)
SIDEA = .(xI + I x (16)

12
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This estimate differs from the form in Eq. (15) in that: (1) the difference in the numerator's
first term has been replaced by a difference of two averages, and (2) different estimates for the
derivatives are used in the numerator and denominator. Each of these differences causes a bias* in
the expected value of ;IDEA, which is illustrated in Fig. 7. The histograms, which result from apply-
ing IDEA to 203 BMAP images, show an expected dispersion about a mean estimate, but the mean is
consistently less than the true shift by an amount that is comparable to the standard deviation.

true shift = .25
p = .182
a = .039

rms error = .078

40

C8
0

35

30

25

20

15

1 0

5

0

0.4 0.6 0.8

Estimated Shift

(a)

0.2 0.4 t 0.6
true shift

Estimated Shift

(b)

E

0
LU

25 -

20 -

15 -

10 -

5-

0- 0 0
D 0.2

true shift = .75
A = .515
l y= .113

rms error = .261

I

0.4 0.6 'tO,.'8 , .
tru. shift

Estimated Shift

(c)

Fig. 7 - Performance of IDEA applied to 203 BMAP image pairs with known shifts of (a) 1/4, (b) 1/2, and (c) 3/4 pixel.
The images were extracted with the technique illustrated in Fig. 14 and described in Section 5. The shift estimate is
negatively biased in all cases, confirming analytical predictions that use the model autocorrelation function.

*Bias was apparently anticipated by D. Hench in Ref. 11, p. 18, Eq. (11).
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Compare these results with Fig. 8, which shows the results of estimating the shifts using Phase
Correlation. Being a gradient-based method, IDEA is expected to be an excellent estimate for small
shifts, but it is clearly lacking, because of bias.
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Fig. 8 - Subpixel performance of Phase Correlation. Applied to the same database of imagery as in Fig. 7, Phase

Correlation produces smaller rms errors than IDEA, primarily because of a smaller bias. Because it is based on a gradient
approximation, IDEA is expected to perform better, at least for small displacements.
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The statistics of S IDEA can be analyzed by using the following expansion of the expected value
of the ratio of random variables A and B:

A <A> + AA <A > _ <(AA)(AB)> + (17)
B <B> +AB <B> <B>2

where AX X - <X >, X = A,B. Using the leading terms in Eq. (17) is reasonable whenever
using the Taylor Series expansion of 1/B is reasonable - that is, as long as B never gets too small
and doesn't fluctuate much. The denominator in Eq. (16), being a sum of many squares, usually con-
forms to these constraints. The higher-order terms in Eq. (17) are small relative to the first terms in
our application. The ultimate justification for this claim lies in the agreement with empirical results,
which will be demonstrated. Generally, the higher-order terms are of order (at least) a. / <X>, rela-
tive to the first, so Eq. (17) is usually a good approximation when the coefficient of variation of X is
small.

The first-order bias of SIDEA can be expressed in terms of the normalized autocorrelation func-
tion of the underlying noiseless image:

PS < rnrn +s > /,2 . (18)

2The variable r is assumed to be stationary (in the stochastic sense), with mean zero and variance 0r .

Along with the measured values xn and yn, additive (sensor) noise terms are included and are
assumed to be independent of the intrinsic scene statistics. Equation (12) becomes

X. = rn + En

and

Yn = rn +s + Vn (19)

with en and Pn zero-mean, uncorrelated white noise processes, with common variance:

tJN 2e < (2 > = <P V2> .N = 2 

By substituting Eq. (19) into Eq. (16) and using Eq. (17), we can write the leading term for
< S IDEA > as

<= I PI-s - Pi+s (20)
SIDEA > 1- P+2 2 (0

The bias associated with this estimate is just the expected estimated shift minus the true shift, that is

< SIDEA > - S.

According to Eq. (20), further characterization of <S IDEA> depends on the form of the image
autocorrelation function.
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Model Autocorrelation Function

The autocorrelation function has been normalized to the value 1 at s = 0, where it assumes its
theoretically maximum value. It can be shown that if < (g,) 2 > (= <(r ,f)2 >) is finite, which can
be assumed for imagery blurred by optics, then Ps must be flat at s = 0, i.e., p0 = 0. Therefore,
for small s one expects:

Ps, 1 - as2 (a Ž 0). (21)

Substituting Eq. (21) into Eq. (20) yields, in the limit of zero noise,

5 IDEA -S* (22)

That is, for an autocorrelation function of the form in Eq. (21), SIDEA is unbiased. All the other
gradient-based estimates for s that we analyze share this property. Because SIDEA is biased empiri-
cally (Fig. 7), the extent to which our other estimates are less biased than SIDEA is determined in part
by the extent to which Eq. (21) fails to model the real autocorrelation function.

For digital imagery, often the only directly measurable values of ps are for s integral, and for
our purposes, s = 1, 2 are the most important data points (along with the image variance r2u, which
has been used to scale ps). Because, in addition, ps should be an even function of s, here we assume

Ps 1 as- 2 + 3S4, (23)

a quartic autocorrelation model. Then empirical values of orr, pl, and P2 can be used to define a
and /. In all cases examined here, both ae and 3 are positive.

Reducing Bias in s

According to the discussion following Eq. (15), the art of generating a good gradient-based esti-
mate s reduces to finding a good approximation for g,. The simplest choice is g, = x, +1 - x,. We
expect this to be more accurate for positive shifts than for negative; the choice x, - x, -l should be
better for negative shifts. The two can be combined to form a mean difference, 1/2 (x, + - x, -I).
Another possibility is to average estimates from the two images; for example,
gn = 1/4 (xn+1 - Xn 4 + Yn+l - Yn-0)

Four approximations for g, are considered:

(a) g0 -Xn +I -xn (CAGRE)

(b) g, = 1/2 (xn + I -Ixn -I) (GEMS)

(c) gn 1/2 (x±+I - Xn + Yn+l - Yn)

(d) g, = 1/4 (xn +1 - X. -1 + Yn +I - Yn -1) (24)
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The acronym CAGRE (CAnonical GRadient Estimate) is used to describe the estimate of Eq. (15)
when the natural substitution of Eq. (24a) is used. The GEMS [9] formulation apparently used Eq.
(24b).

The value of <s> (and, hence, the bias) can be estimated for each estimate generated by
approximations (a) through (d) in Eq. (24) by using the same method used to evaluate 5

IDEA. The
results are:

(1 - p) - (p - Pl-s) + a2/or2(a) <ia > =2 P
2(1 - pi + or /or 2)

(b) < Sb > = 2 2
1 - P2 + OaN/Or

(c) <>=PI-S - PS+t
2 (1 - pal) - (Pl-s - 2ps + Ps+i) + 2u2/or2

(d) <~d > 2 (l- -ps )(25)
(1 - P2) - 1/2 (P2-s - 2 ps + Ps+2) + ayNl*(5

Figure 9 graphs <s> for each approximation by using the quartic polynomial model, Eq. (23),
which is fit to measured values of pt and P2 from HiCAMP imagery selected to emphasize the differ-
ences in performance of the estimates. Noise-to-clutter ratios (UN/Ur) of 0.00, 0.05, and 0.10 are
illustrated. The results for IDEA are also shown.

Note that for an IR scanning sensor with state-of-the-art sensitivity (= 0.2 ILW/(cm2-ster-itm)
LW), (aN/ar) is often less than 0.01 for land or cloud backgrounds. The corresponding values of
< s > are indistinguishable from those in Fig. 9 for a noise-to-clutter ratio of zero. The most benign
Earth backgrounds tend to be ocean, for which the corresponding value of (aN/lr) is approximately
0.10. However, frame-to-frame subtraction, whose primary purpose is clutter removal, is an unlikely
method of detecting moving targets in benign backgrounds. In fact, it increases noise by a factor of
V/2.) Consequently, for values of (rN/rr) much greater than 0.10 (i.e., uncluttered scenes), displace-
ment estimation is probably unnecessary.

Figure 10 plots sample means (based on 10 or more trials) of s; these correspond to the theoreti-
cal curves of Fig. 9. A single image is used, with different trials corresponding to independent simu-
lations of additive noise. Nonintegral sample values are generated for the HiCAMP imagery by using
Cubic Convolution (CC) (see Section 6). The CC method interpolates between measured values with
a cubic polynomial, making the polynomial model (Eq. (23)) for p5 particularly tenable.

The curves of Figs. 9 and 10 are in qualitative agreement. The greatest divergence, which
occurs for estimate (d), can be traced to the dependence of <Sd > on P5 +2 (Eq. (25)). Among all
the expected values of estimates considered, only <id> depends on p at such a large value of its
argument. Recall that the model Eq. (23) is fit only to smaller values of s, viz. s = 1,2.
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Fig. 9 - Theoretical performance of IDEA and a family of gradient-based estimates. Constants of the model
autocorrelation function are fit to measured values of pi and P2 ( = .970 and = .927) for a single HiCAMP image (of
broken clouds and terrain) treated as noiseless, with a, = 19 AW/(cm2 -ster-Am), while actual sensor noise was
= t AW/(cm 2-ster-Am). (a) For zero added noise, method (a) is superior, as long as s is nonnegative (it can always be so

chosen, by proper labelling convention). (b) Noise-to-clutter ratio of .05 corresponds to a cluttered background with
HiCAMP noise. Method (a) is still superior for s > .05, but for I s I < .05, (c) is the best. (c) Noisy, cluttered imagery
(noise-to-clutter = .10). The choice of best estimator depends strongly on the range of expected values of the true
displacement.
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Fig. 10 - Experimental sample means corresponding to the predictions of Fig. 9. In (b) and (c), the estimators were

applied after random noise was added to the HiCAMP image. Agreement with theory is generally good, except for method

(d), whose mean performance depends more heavily on large values of the shift s through the model autocorrelation function

(ViZ., p, +2) than either (a), (b), (c), or IDEA.
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Notice in Figs. 9 and 10 that all graphs are antisymmetrical, except for (a) (CAGRE). Also,
Figs. 9(a) and 10(a) imply that for positive s, (a) performs best, with (c) the best of the remaining
methods. For negative s, (a) can be the worst method, but this defect is inconsequential because s
can always be forced to lie between 0 and 1 by a mere relabelling of the coordinates. For the two
noise levels illustrated in Figs. 9 and 10, the best estimate depends on the range of typical values of
the true shift s. In Fig. 9(b) for s > .05, estimate (a) is again generally superior, but for small shifts
it becomes the most biased. For I s I < .05, estimate (c) is the best, although IDEA is sometimes
as good. In Fig. 9(c), the best choice has a more complicated dependence on s. Note that SIDEA, the
estimate that instigated our study of gradient-based methods, is usually one of the more biased
choices.

The performance of each estimate depends on the image statistics. Figure 11 shows theoretical
results, as in Fig. 9, but for another HiCAMP scene, with ten times the clutter. Except for IDEA,
the differences in performance are much less pronounced than for the scene used to generate Fig. 9.
For zero noise, again (a) is superior (for positive s), but now (b) and (c) are close competitors. As
the noise increases, (d), which uses the most averaging in approximating g, and hence is expected to
be less sensitive to noise, emerges as superior. Note that here a noise-to-clutter ratio of 0.1
corresponds to an artificially high (HiCAMP) sensor noise (i.e., about 20 times its actual value for
this scene).

In general, for small s all the estimates except (a) satisfy <s> - (1 + E)S; if the noise-to-
clutter ratio is small enough, then <ia > is also of this form. Also, for zero noise and at s = 1, the
formulae in Eq. (25a-c) give zero bias, whereas for (d) and IDEA, the amount of bias depends on
scene statistics. These s = 1 properties depend only on the first-order approximation of Eq. (17), not
on the model of the autocorrelation function, Eq. (23).

Note that the expected values from Eqs. (20) and (25) could be used, in principle, to estimate
the bias of any given estimate. Then the bias could be subtracted from s, in the hope of forming an
even better estimate. However, this procedure would require independent knowledge, not only of
expected noise, but of scene statistics through or and p,.

Finally, these results can be used to interpret some previously published work. In a study [9] of
GEMS performance, Rauch and Zele found the rms residual of the difference frame,
D = <(Y - X.)2 > 1/2, as a function of the GEMS estimate of the jitter, I <sGEMS> I, for 200
HiCAMP scenes and a range of jitter from 0.00 to approximately 0.25 pixels. Appendix A explains
their results as a consequence of bias in GEMS, of a particular (linear) form that is identical to that
predicted for estimate (b) at small values of s. This demonstrates the consistency of our model with
independent experimental results.

Section Summary

This analysis began by noting large biases, listed in Fig. 7, in the performance of a gradient-
inspired displacement estimate, IDEA, as applied to a database of BMAP imagery for induced shifts
of 0.25, 0.5, and 0.75 pixels. For comparison, Fig. 8 showed the improved results of applying Phase
Correlation, a more global method, to the BMAP images.
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Fig. t 1 - HiCAMP results as in Fig. 9, but for an image with 10 times the clutter (ar = 194 ttW/(cm 2-ster-tm),

p1 = .992, P2 = .971). Generally there is less difference in performance than for the case shown in Fig. 9. For zero
added noise, (Fig. t1(a)), estimate a) (CAGRE) is again superior. But now a substantial relative noise, (Fig. 11(b)) .05,

which corresponds to 10 times HiCAMP sensor noise, is required to make the best choice dependent on s. With twice the
noise in Fig. It (b), Fig. It (c), estimate d) emerges as the best choice.
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Analysis of the theoretical and empirical performance of gradient-based methods led us to a sys-
tematic investigation of a family of algorithms that have a generally reduced bias, a contention vali-
dated by the results in Table 1 and illustrated in Fig. 12 for the BMAP data. We found that:

* Compared to IDEA, bias and error in the new gradient estimates are reduced, particularly for
CAGRE.

* In low noise-to-clutter environments, typical of state-of-the-art IR sensors, the theoretical
analysis and HiCAMP validation (Appendix A) imply that the simplest of the gradient esti-
mates, sa (CAGRE), is usually the least biased, if s is simply forced by labelling convention
to lie between the values 0 and 1.

* CAG1zE can become biased for small displacements if the clutter-to-noise ratio is small, but in
such cases displacement estimation is less important to the target-detection problem.

Table 1 - Mean, Variance, and Root-Mean-Square Error (rmse) for Displacement
Estimators Applied to the BMAP Database for Three Values of Shift

s = 0.25 s = 0.5 s = 0.75
METHOD Itao rmse A or rmse . or rmse

(a) GAGRE 0.246 0.029 0.029 0.501 0.017 0.017 0.757 0.030 0.03 1

(b) GEMS 0.278 0.031 0.042 0.545 0.049 0.067 0.785 0.051 0.061

(c) 0.194 0.037 0.067 0.413 0.057 0.105 0.674 0.054 0.094

(d) 0.287 0.032 0.049 0.590 0.070 0.114 0.908 0.125 0.202

IDEA 0.182 0.039 0.078 0.356 0.075 0.162 0.515 0.113 0.261

PHASE CORRELATION 0.279 0.060 0.067 0.499 0.031 0.031 0.7t9 0.060 0.067

5. METHODS OF PERFORMANCE ASSESSMENT

One way of testing the accuracy of a displacement estimate is to control the relative displace-
ment between images and then compare the estimate to the known value. However, this control was
absent at the time of measurement for most appropriate IR data. Nevertheless, often a virtual shift is
achieved by creating a shifted copy of an image; for integer displacement, one simply relabels the
samples by the desired shift and crops the spurious edges. If desired, additive noise can also be simu-
lated by using a random number generator.

Fractional shifts often require interpolation to produce a second frame, as was done with
HiCAMP imagery. However, most registration methods also adopt, at least implicitly, some intetpo-
lation assumption (linearity, for gradient-based estimates). Whatever the form, this approximation
may be intimately related to the procedure chosen to create the shifted frame-or at least the choice
may be strongly biased toward a similar technique. One then faces the prospect of testing registration
accuracy on a pair of frames whose relative shift was simulated by using a method similar to the one
being tested. Impressive apparent performance can then result merely because of a kinship between
registration technique and testing method.
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Fig. 12 - Histograms for CAGRE applied to BMAP data,
for comparison with IDEA in Fig. 7 and PC in Fig. 8
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For example, Fig. 13(a) shows the results of applying PC to the same simulated HiCAMP shifts
as in Fig. 9(a). By contrast, in Fig. 13(b) the same simulated displacement was achieved by using a
Fourier shift method instead of Cubic Convolution. Because PC is itself a Fourier method, its perfor-
mance is wonderfully accurate in Fig. 13(b). It would be perfect except for a small error caused by
the von Hann window, which is used to taper the edges of the image.

0.75 - S 0.75 Phase Correlation

0.50 - 0.50-

0.25 0.25

C~~~~~~~~~~~~~~~~
- 0 25 0

Q) 5)_1 10
-0.25 -E -0.25-

-0.50 ON/ =-0.50 -N u 

-0.75 -0.75-

-1 -0.75 -0.50 -0.25 0 0.25 0.50 0.75 1 -1 -0.75 -0.50 -0.25 0 0.25 0.50 0.75 1

S S

(a) (b)

Fig. 13 - Effect of choice of subpixel simulation method on accuracy o' displacement estimate. (a) Phase Correlation
applied to the same images as in Fig. 9; (b) the displaced images are now produced with Phase Shifting instead of Cubic
Convolution. Performance is greatly enhanced because of the similarity between the method of shift simulation and the
method of displacement estimation.

One way of ensuring independence of the simulation and registration methods is to use imagery
from a scanning sensor that samples more than once per pixel. In this way, analytic interpolation can
be avoided altogether. For example, if the sampling rate is four times per dwell time,* then from a
single frame of scanning data two new frames can be created. One frame contains every fourth sam-
ple (e.g., samples 1, 5, 9,...), and the other frame contains every adjacent fourth sample (e.g., sam-
ples 2, 6, 10,...) (Fig. 14). The two images so constructed are effectively misregistered by 1/4 pixel.
Shifts of 1/2 and 3/4 may also be created in the same manner. Section 4 used this principle in the
comparisons of Phase Correlation and IDEA.

The primary testbed used for comparing the displacement estimates was a database of 203
independent BMAP images of various types of background. The BMAP sensor is a dual-tband
Midwave Infrared and Longwave Infrared (MWIR/LWIR) scanner that samples an analog signal 3.5
times per dwell time. The backgrounds represented in the database are in either MWIR or LWIR
wavebands and include clear sky, various cloud types, terrain, ocean, and urban scenes. The images
were culled from a much larger database and represent independent scenes, with no overlap. Because
the registration of low-clutter imagery is irrelevant to our problem, a lower limit was imposed on the

*The dwell time is the time the sensor requires to scan the geometrical image of a point object.
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F A F- 1/4 pixel shift

Position of Pixel Footprint

Fig. 14 - Use of oversampled BMAP data to create images with exactly

known subpixel shifts. Forming one image from samples 1,5,9,...
(shaded pixels) and a second image from samples 2,6,10,...
(crosshatched), gives an image pair with a shift of exactly 1/4 pixel with
real (sensor-produced) noise. Image pairs with shifts of 1/2, 1/3, 3/4,
etc., can be extracted in a similar manner.

clutter content of imagery in the BMAP database (U, _ .05 UN). The major effect was to eliminate
scenes that are mostly blank with no discernible natural features.

Because this method of simulating misregistration limits the fractional shifts to rather large
values,t the more traditional method (described in the text) of interpolation between pixels (or sam-
ples) has also been used. In these cases, the imagery came from the HiCAMP database, which was
derived from a staring sensor. The effective "sampling rate" is once per dwell time. Results from
using this imagery are not as reliable as for BMAP data because they can depend on the particular
interpolation procedure (resampler) chosen as described earlier. Subpixel shifts were simulated by
using Cubic Convolution, which is described in Section 6.

6. RESAMPLING METHODS

The final product of any registration algorithm is a pair of spatially aligned images. With an
estimate of the relative displacement between two images in hand, the final task is to resample one of
the images at the estimated shift. The success of the registration process depends not only on the
accuracy of the displacement estimate but on the fidelity of the resampling method. This section com-
pares four resampling techniques applied to BMAP IR background data.

Because resampling an image at a displacement of an integer number of samples requires only
reindexing the data (along with the usual cropping of nonoverlapping portions), the problem of resam-
pling for an arbitrary displacement is easily reduced to the case of a subsample shift. Two general
methods are used for retrieving continuous data from discrete measurements: interpolation and
approximation. Interpolation methods reproduce the data exactly at the integer-sample values, while
approximation methods, such as an lms fit of some low-order polynomial to neighboring samples,

*For the BMAP sensor, uN was approximately 0.20 ItW/(cm 2-ster-Am).
tAs soon as a shift less than 1/3.5 pixels is simulated, coverage gaps between successive pixels develop.
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need not. In situations of interest here, the shift can be small, and for such cases the limiting
behavior of a resampler should correspond to no resampling. Therefore, only interpolation methods
are considered. Also, the discussion is limited to shifts in one direction only-two-dimensional shifts
can be effected simply by successive one-dimensional shifts.

Interpolators

Linear Interpolation

This method, which is the simplest, is expected to give reasonable performance and will serve as
a baseline for comparison with more elaborate schemes.

Spline Interpolation

Spline interpolation algorithms are perhaps the most commonly used, with an extensive literature
devoted to their development. Here Cubic Spline interpolation was chosen to represent this class of
algorithms [12]. In particular, the CSAKM routine from the International Mathematical and Statisti-
cal Libraries, Inc. (IMSL, Inc.) library [13] was selected; this program is based on a method
developed by Akima [14]. Optical systems remove high spatial frequencies, so an interpolator that is
devoid of large artifactual oscillations is preferable. The Akima interpolator exhibited the least
intrasample fluctuations behavior of all the IMSL algorithms.

Phase Shifting

Just as the Fourier Phase can be used to estimate the displacement between a pair of images,
alteration of the phase can be used to produce a shifted copy of a single image. This method has
been used to simulate sensor jitter [15]. (See also Fig. 13(b).) It is exact for integer-sample shifts
and can be adapted to subsample shifts. If Xk is the DFT of the image x, given by Eq. (3), a shifted
image xn +5 is defined by its Fourier transform:

Xk e27riks /N , 0 k < 1/2(N - 1)
e7riks 1/2 (N - 1) C k < N (26)

where N is assumed to be odd. This form imposes conjugate symmetry (Xk = (XNk)*) to ensure
that the new sequence xn +5 remains real. Choosing N to be odd avoids a problem at the Nyquist fre-
quency, k = 1/2N cycles/frame; a sinusoid of this frequency that is in phase with the sampling pro-
cess cannot be detected. Ignoring this effect can lead to surprisingly poor interpolation, with large
oscillations between the data samples.

Cubic Convolution

This technique is particularly well-suited to interpolation of optical imagery [16] and has been
used to resample Landsat data. Between any pair of integer sample values, Cubic Convolution con-
structs a cubic polynomial that is continuous and has a continuous derivative across the integers.
After these conditions are satisfied, the one remaining degree of freedom is used to minimize errors
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between the interpolated value and a presumed Taylor-series expansion of the underlying continuous
image. The procedure is implemented by simple convolution with a four-point kernel:

2

Xn+= S Wj(S) Xn +k, (0 _ s _ 1) (27)

with

wt(s) = 1/2 (-s + 2s2 - S3)

w0(s) = 1/2 (2 - 5s2 + 3s3)

wI(s) = 1/2 (s + 4s2 - 3S3)

w2(s) = 1/2 (-s2 + S3).

An attractive feature of this method is its purely local dependence on the data (four adjacent sample
values), as opposed to Cubic Spline and Phase Shifting, which depend on global image values. It is
ideal for implementation in a massively parallel computing architecture.

Evaluation and Results

To assess the performance of resampling techniques, oversampled BMAP data are used to create
image pairs with known subpixel displacement. Previous studies typically have relied on either syn-
thetic data or on an artificial shift of real data. By using the method illustrated in Fig. 14 for shifts of
1/4, image pairs are constructed with shifts of 1/2, 1/4, and 1/5 pixel. Then the resampling algo-
rithms can be applied to real, shifted imagery; one is not forced to analyze data with unknown jitter,
which would require a preliminary displacement estimate contributing extra, unknown error.

Performance of the resampling techniques is measured by the value of the clutter reduction fac-
tor r defined by

r ~~~~~~1/2

fr I -< - X")2> (28)

where n,, is the resampled version of y, and x, is the "unshifted" image. r is the amount that
resampling reduces clutter leakage for a frame differencing signal processor. If perfect registration is
achieved and the background varies linearly over the range of the shift, then

rF-ro= [ 2 s2 + (29)
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where* a2 >> <g >. For images with high clutter (ag>>» N) and/or large shifts, clearly the
potential for accurate resampling to decrease residual clutter after differencing is greater.

Figure 15 plots the experimental results for F vs s. The performance ranking is nearly constant,
with Cubic Convolution being marginally superior. The theoretical value ro, given in Eq. (29), is
plotted as the dashed line for agl/N = 6, which is typical for BMAP data [17]. Linear interpolation,
although consistently worst, gives results comparable to the other, more elaborate interpolations.
Because all the routines perform similarly, other factors-such as ease of integration with a displace-
ment estimate, or computational speed-may dominate in the choice of resampling technique.

0
c> = Cubic Convolution °
0 = Cubic Spline

= Phase Shifting
C + =Linear ,

+

+ ~~4

0.2 0.3 0.4 0.5

Scene Displacement

Fig. 15 - Evaluation of four interpolation algorithms. The clutter-reduction factor r, averaged over the
BMAP database, is plotted as a function of displacement. Cubic Convolution is superior at all
displacements except one, but it provides only marginal improvement over simple linear interpolation.
The dashed line is the theoretical value F0 , which assumes perfect realignment and a oto cON ratio of 6, a

typical value of BMAP data.

7. SUMMARY AND CONCLUSIONS

We have shown that PC (Phase Correlation) is a robust estimator of image displacement. It is
accurate for large as well as small displacements; it is superior to conventional cross-correlation; and
it has a natural ability to detect parallax effects. More generally, it can be used to recognize the
independent motion of features within an image and so may have important applications directly in the
area of autonomous target detection.

Motivated by the early success of IDEA (Image Displacement Estimation Algorithm) to investi-
gate gradient-based methods of shift estimation, we developed a family of such methods that differ
only in the choice of approximation for image gradient. In the process, we explained the bias

*The derivation of Eq. (29) follows along the lines of the Section 4 calculations. See especially Eq. (13).
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apparent in experimental applications of IDEA and GEMS (Gradient Estimation Method) to HiCAMP
and BMAP imagery. The optimal choice among the family depends on the particular image statistics.
However, as long as shifts are small and the noise-to-clutter ratio is not unusually large (> >0.1),
CAGRE is expected to perform best.

Phase Correlation is generally as effective for the HiCAMP and BMAP imagery as most of the
gradient-based methods we examined. CAGRE performs better for the BMAP database, but the
Phase Fitting method, or a similar modification for removing high-frequency noise or bias, will prob-
ably make this phase-based method perform at least as well as any gradient-based method, while
maintaining its superior capabilities in the nonidealized circumstances described. For space-based
applications with sampling rates of three per dwell time, this method has achieved error levels of a
few millipixels with negligible bias. Of the interpolating methods evaluated, Cubic Convolution is the
most accurate for almost all shifts studied. It is also easy to implement, requiring only a few "multi-
plies" and "adds" of local sample values.

One of the methods used here for evaluating registration methods is new. It exploits oversam-
pled data from an IR scanner to avoid synthetic generation of displacements or use of unknown jitter
in real imagery. Synthetic methods, however, were part of our HiCAMP analyses.

The improved methods of IR image registration developed here may permit the use of frame dif-
ferencing as a moving target indicator in more cluttered environments than has previously been con-
sidered practical. This possibility motivated the present work, but our results do not depend on wave
band and should prove valuable in any application requiring algorithmic image registration.
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Appendix A

EXPLANATION OF PRIOR WORK

The analysis of Section 4 can be used to interpret some previously published work. In a study
of GEMS performance [Al], the rms residual of the difference frame, D = < (yn - xn)2 > 1/2, was
plotted vs the GEMS estimate of the jitter, I <x GEMS > I , for 200 HiCAMP scenes and a range of
jitter from 0.00 to approximately 0.25 pixels. The resulting scatter plot (Fig. 5 of Ref. Al) shows a
strong linear trend, especially in the range of 0.10 to 0.25 pixels. The upper curve of Fig. Al shows
a synopsis of the data, in the form of a fit to the model described below.

UV)
F--z
D0
0

0.00 0.05 0.10 0.15 0.20
SHIFT ESTIMATE (GEMS)

0.25

Fig. Al - Synopsis of Rauch and Zele results: rms values of
differenced frames vs GEMS estimate of shifts, before and after
registration. The experimentally reported values have been fit to the
model of Eq. (29) by matching: (1) the slope in the linear region and
(2) the intercept. The value of the (common) intercept gives intrinsic
image noise; the slopes of the two curves permit estimation of bias

(-30%) in the GEMS algorithm.

The lower curve shows the corresponding fit to the values of D in the difference frame after
GEMS registration (with linear interpolation) was applied. The data converge as s - 0 to approxi-
mately the same ordinate value (three counts) for either curve, but for the second set, the slope was
reduced from approximately 110 to 33 counts/pixel. Perfect registration would have reduced the
slope to 0, the value of D then depending only on noise.

Using Eq. (19) to evaluate D as a function of the true jitter s yields

D = [2 ro - Ps) + 2 ]2 (Al)
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Referring to the autocorrelation model of Eq. (23), we expect that the tested values of s are all small
enough (X2 < .06) that the quartic term can be ignored, so that Eq. (Al) becomes

D = 2aL2 Us2 + 2U2) 1/2 (A2)

Each fit of Fig. Al is based on a match to this model of the slope in the region 0.1 <s <0.25 and
the intercept. The residual linearity in the lower curve implies that sGEMS is proportional to the true
shift s:

;GEMS = ks. (A3)

To see why, note that the measured value of D (for either curve) at the intercept can be used, along
with Eq. (A2), to read off the noise:

2a 2 = 9. (A4)

Then, inserting the ansatz (Eq. (A3)) into Eq. (A2) and using the upper curve of Fig. Al results in

[20,2 clk 2] 112 = 110 (A5)

in the region of linearity, 0.1 < 5GEMS < 0.25. Again assuming Eq. (A3), the residual error after
registration is s - 5 GEMS = sGEMS(1/k - 1). If this expression is substituted for the variable s in
Eq. (A2), the form for the lower curve of Fig. Al should bK produced. Its slope value of 33 then
yields

[2a2Ce(l /k - 1)2]1/2 = 33. (A6)

Equations (A5) and (A6) admit two solutions for k, either 0.70 or 1.30; the available data do not
allow the distinction to be made. At any rate, the independent results of Rauch and Zele [Al] have
been explained as resulting from bias in GEMS, of the particular linear form shown in Eq. (A3).
This behavior is identical to the predictions derived for method (b) (as well as the other gradient-
based methods) at small values of s, shown in Fig. 9 and 11.
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Appendix B

TWO-DIMENSIONAL SHIFT ESTIMATES

The one-dimensional gradient-based estimates discussed in this report have natural generaliza-
tions to two (or more) dimensions. Calling s the vector shift and gmn the gradient at position (m, n),
with components gm n 3 i = 1, 2, we minimize the mean square error:

e2= S (Ym n - Xm n -gm, s)n , (B1)
m,n

the difference between the sample values in the second frame (y) and those predicted from the sample
values (x) of the first. The result is the estimate

s = M-l V (B2)

where the matrix M and the vector V have components:

M"'i = ,, g'm n gym n
m,n

Vi = E (Ym,n - Xm,n) gmn. (B3)
m,n

To solve Eq. (B2) we must approximate the gradients in Eq. (B3). Each of the approximations in Eq.
(24) has a two-dimensional analogue. For example, the canonical substitution in Eq. (24a) becomes:

gmon Xm+l,n - Xm,n (B4)

gm ,n Xm,n +I Xm1 n -

Substituting Eq. (B4) into Eq. (B3) and using the result in Eq. (B2) then produces the two dimen-
sional version of CAGRE, estimate (a) (Eq. (24)).
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